Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.672
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2741-2747, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629537

RESUMO

To evaluate the effect of thermal hydrolysis pretreatment time on the sludge anaerobic digestion system of wastewater treatment plants (WWTPs) in Daxing district, Beijing, the structure and diversity of microbial communities in primary sludge and an activated sludge anaerobic digestion system with different thermal hydrolysis pretreatment times (15 min, 30 min, and 45 min) were analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the dominant groups of digested sludge were mainly distributed in Firmicutes, Cloacimonadota, Chloroflexi, and Synergistota, with W5 being the most common genus. The sum of relative abundance of the dominant phylum was greater than 60%, and W5 accounted for 20.8%-54.5%, showing a high abundance of a few dominant species. During the anaerobic digestion of thermo-hydrolyzed sludge, the relative abundance of acetogenic methanogens decreased due to high levels of volatile fatty acids (VFAs) and ammonia nitrogen (NH4+-N) concentrations, which suggested that the hydrogenophilic methanogenic pathway was more than that of the acetogenic methanogenic pathway. Correlation analysis showed that the soluble protein and pH of thermo-hydrolyzed sludge, NH4+-N of digested sludge, and thermal hydrolysis pretreatment time were the four main environmental factors affecting microbial community structure, and NH4+-N of digested sludge had the largest negative correlation with methanogens. The thermal hydrolysis pretreatment time was negatively correlated with both the Chao index and Shannon index, so longer thermal hydrolysis pretreatment time was not conducive to microbial flora during anaerobic digestion.


Assuntos
Microbiota , Esgotos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Metano , Reatores Biológicos
2.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557040

RESUMO

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Metagenoma , Metano
3.
Water Sci Technol ; 89(7): 1701-1724, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619898

RESUMO

Hyperparameter tuning is an important process to maximize the performance of any neural network model. This present study proposed the factorial design of experiment for screening and response surface methodology to optimize the hyperparameter of two artificial neural network algorithms. Feed-forward neural network (FFNN) and radial basis function neural network (RBFNN) are applied to predict the permeate flux of palm oil mill effluent. Permeate pump and transmembrane pressure of the submerge membrane bioreactor system are the input variables. Six hyperparameters of the FFNN model including four numerical factors (neuron numbers, learning rate, momentum, and epoch numbers) and two categorical factors (training and activation function) are used in hyperparameter optimization. RBFNN includes two numerical factors such as a number of neurons and spreads. The conventional method (one-variable-at-a-time) is compared in terms of optimization processing time and the accuracy of the model. The result indicates that the optimal hyperparameters obtained by the proposed approach produce good accuracy with a smaller generalization error. The simulation results show an improvement of more than 65% of training performance, with less repetition and processing time. This proposed methodology can be utilized for any type of neural network application to find the optimum levels of different parameters.


Assuntos
Algoritmos , Redes Neurais de Computação , Simulação por Computador , Reatores Biológicos
4.
Water Sci Technol ; 89(7): 1725-1740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619899

RESUMO

The algal-bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal-bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.


Assuntos
Amônia , Nitrogênio , Nitrogênio/análise , Desnitrificação , Estações do Ano , Reatores Biológicos/microbiologia , Águas Residuárias
5.
Water Sci Technol ; 89(7): 1831-1845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619906

RESUMO

In this study, further treatment of coking wastewater treated in anoxic-oxic-membrane bioreactor (A2O-MBR) was investigated to meet the standards of the ministry by means of nanofiltration (NF) (with two different membranes and different pressures), microfiltration -powder activated carbon (MF-PAC) hybrid system and NF-PAC (with two different membranes and five different PAC concentrations) hybrid system. In addition to the parameters determined by the ministry, other parameters such as ammonium, thiocyanate (SCN-), hydrogen cyanide (HCN), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), color were also examined to evaluate the flux performance and treatment efficiency of the hybrid processes. According to the results, chemical oxygen demand (COD) in the NF process, COD and total cyanide (T-CN) in the MF-PAC process could not meet the discharge standards. As for the NF-PAC hybrid system, XN45 membrane met the discharge standards in all parameters (COD = 96±1.88 mg/L, T-CN =<0,02 mg/L, phenol =<0.05 mg/L), with a recovery rate of 78% at 0.5 g/L PAC concentration.


Assuntos
Coque , Purificação da Água , Águas Residuárias , Carvão Vegetal , Pós , Purificação da Água/métodos , Membranas Artificiais , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
6.
Chemosphere ; 355: 141831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561162

RESUMO

The recalcitrance of lignin impedes the efficient utilization of lignocellulosic biomass, hindering the efficient production of biogas and value-added materials. Despite the emergence of anaerobic digestion as a superior alternative to the aerobic method for lignin processing, achieving its feasibility requires thorough characterization of lignin-degrading anaerobic microorganisms, assessment of their biomethane production potential, and a comprehensive understanding of the degradation pathway. This study aimed to address the aforementioned necessities by bioaugmenting seed sludge with three distinct enriched lignin-degrading microbial consortia at both 25 °C and 37 °C. Enhanced biomethane yields was detected in the bioaugmented digesters, while the highest production was observed as 188 mLN CH4 gVS-1 in digesters operated at 37 °C. Moreover, methane yield showed a significant improvement in the samples at 37 °C ranging from 110% to 141% compared to the control, demonstrating the efficiency of the enriched lignin-degrading microbial community. Temperature and substrate were identified as key factors influencing microbial community dynamics. The observation that microbial communities tended to revert to the initial state after lignin depletion, indicating the stability of the overall microbiota composition in the digesters, is a promising finding for large-scale studies. Noteworthy candidates for lignin degradation, including Sporosarcina psychrophila, Comamonas aquatica, Shewanella baltica, Pseudomonas sp. C27, and Brevefilum fermentans were identified in the bioaugmented samples. PICRUSt2 predictions suggest that the pathway and specific proteins involved in anaerobic lignin degradation might share similarities with those engaged in the degradation of aromatic compounds.


Assuntos
Lignina , Microbiota , Lignina/metabolismo , Consórcios Microbianos , Reatores Biológicos , Anaerobiose , Metano/metabolismo , Biocombustíveis
7.
J Agric Food Chem ; 72(15): 8664-8673, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564669

RESUMO

Retinol is a lipid-soluble form of vitamin A that is crucial for human visual and immune functions. The production of retinol through microbial fermentation has been the focus of recent exploration. However, the obtained titer remains limited and the product is often a mixture of retinal, retinol, and retinoic acid, necessitating purification. To achieve efficient biosynthesis of retinol in Yarrowia lipolytica, we improved the metabolic flux of ß-carotene to provide sufficient precursors for retinol in this study. Coupled with the optimization of the expression level of ß-carotene 15,15'-dioxygenase, de novo production of retinol was achieved. Furthermore, Tween 80 was used as an extractant and butylated hydroxytoluene as an antioxidant to extract intracellular retinol and prevent retinol oxidation, respectively. This strategy significantly increased the level of retinol production. By optimizing the enzymes converting retinal to retinol, the proportion of extracellular retinol in the produced retinoids reached 100%, totaling 1042.3 mg/L. Finally, total retinol production reached 5.4 g/L through fed-batch fermentation in a 5 L bioreactor, comprising 4.2 g/L extracellular retinol and 1.2 g/L intracellular retinol. This achievement represents the highest reported titer so far and advances the industrial production of retinol.


Assuntos
Vitamina A , Yarrowia , Humanos , Vitamina A/metabolismo , Fermentação , Yarrowia/genética , Yarrowia/metabolismo , Reatores Biológicos , beta Caroteno/metabolismo , Redes e Vias Metabólicas , Engenharia Metabólica
8.
Water Sci Technol ; 89(6): 1454-1465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557711

RESUMO

We used bench-scale tests and mathematical modeling to explore chemical oxygen demand (COD) removal rates in a moving-bed biofilm reactor (MBBR) for winery wastewater treatment, using either urea or nitrate as a nitrogen source. With urea addition, the COD removal fluxes ranged from 34 to 45 gCOD/m2-d. However, when nitrate was added, fluxes increased up to 65 gCOD/m2-d, twice the amount reported for aerobic biofilms for winery wastewater treatment. A one-dimensional biofilm model, calibrated with data from respirometric tests, accurately captured the experimental results. Both experimental and modelling results suggest that nitrate significantly increased MBBR capacity by stimulating COD oxidation in the deeper, oxygen-limited regions of the biofilm. Our research suggests that the addition of nitrate, or other energetic and broadly used electron acceptors, may provide a cost-effective means of covering peak COD loads in biofilm processes for winery or another industrial wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Nitratos , Biofilmes , Reatores Biológicos , Compostos Orgânicos , Purificação da Água/métodos , Nitrogênio , Ureia , Desnitrificação
9.
Water Sci Technol ; 89(6): 1583-1594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557720

RESUMO

Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.


Assuntos
Compostos de Amônio , Microbiota , Águas Residuárias , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos/microbiologia , Bactérias , Biofilmes , Nitrogênio , Esgotos , Desnitrificação
10.
Microb Ecol ; 87(1): 57, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587527

RESUMO

Understanding the intricate ecological interactions within the gut microbiome and unravelling its impact on human health is a challenging task. Bioreactors are valuable tools that have contributed to our understanding of gut microbial ecology. However, there is a lack of studies describing and comparing the microbial diversity cultivated in these models. This knowledge is crucial for refining current models to reflect the gastrointestinal microbiome accurately. In this study, we analysed the microbial diversity of 1512 samples from 18 studies available in public repositories that employed cultures performed in batches and various bioreactor models to cultivate faecal microbiota. Community structure comparison between samples using t-distributed stochastic neighbour embedding and the Hellinger distance revealed a high variation between projects. The main driver of these differences was the inter-individual variation between the donor faecal inocula. Moreover, there was no overlap in the structure of the microbial communities between studies using the same bioreactor platform. In addition, α-diversity analysis using Hill numbers showed that highly complex bioreactors did not exhibit higher diversities than simpler designs. However, analyses of five projects in which the samples from the faecal inoculum were also provided revealed an amplicon sequence variants enrichment in bioreactors compared to the inoculum. Finally, a comparative analysis of the taxonomy of the families detected in the projects and the GMRepo database revealed bacterial families exclusively found in the bioreactor models. These findings highlight the potential of bioreactors to enrich low-abundance microorganisms from faecal samples, contributing to uncovering the gut microbial "dark matter".


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Reatores Biológicos , Fezes
11.
Bioresour Technol ; 399: 130647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561152

RESUMO

A constructed microbial consortia-based strategy to enhance caproic acid production from one-stage mixed-fermentation of glucose was developed, which incubated with acidogens (Clostridium sensu stricto 1, 11 dominated) and chain elongators (including Clostridium sensu stricto 12, Sporanaerobacter, and Caproiciproducens) acclimated from anaerobic sludge. Significant product upgrading toward caproic acid (8.31 g‧L-1) and improved substrate degradation was achieved, which can be greatly attributed to the lactic acid platform. Whereas, a small amount of caproic acid was observed in the control incubating with acidogens, with an average concentration of 2.09 g‧L-1. The strategy accelerated the shape and cooperation of the specific microbial community dominated by Clostridium sensu stricto and Caproiciproducens, which thereby contributed to caproic acid production via the fatty acid biosynthesis pathway. Moreover, the tailored electrodialysis with bipolar membrane enabled progressive up-concentration and acidification, allowing selective separation of caproic acid as an immiscible product with a purity of 82.58 % from the mixture.


Assuntos
Caproatos , Clostridium , Fermentação , Anaerobiose , Caproatos/metabolismo , Clostridium/metabolismo , Reatores Biológicos
12.
J Environ Manage ; 357: 120653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574704

RESUMO

In this research, we established an enhanced aerobic biological method utilizing a high-density bacterial flora for the treatment of low-biochemical plating parts washing wastewater. The elucidation of pollutant removal mechanisms was achieved through a comprehensive analysis of changes in sludge characteristics and bacterial community structure. The results demonstrated that throughout the operational period, the organic load remained stable within the range of 0.01-0.02 kgCOD/kgMLSS·d, the BOD5/COD ratio increased from 0.004 mg/L to 0.33 mg/L, and the average removal rates for key pollutants, including COD, NH4+-N, and TN, reached 98.13%, 99.86%, and 98.09%. MLSS concentration remained at 7627 mg/L, indicating a high-density flora. Notably, Proteobacteria, Bacteroidota, and Acidobacteriota, which have the ability to degrade large organic molecules, had been found in the system. This study affirms the efficacy of the intensive aerobic biological method for treating low-biochemical plating washing wastewater while ensuring system stability.


Assuntos
Poluentes Ambientais , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Nitrogênio/análise , Esgotos/química , Bactérias/metabolismo , Poluentes Ambientais/análise
13.
J Environ Manage ; 357: 120828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579473

RESUMO

Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.


Assuntos
Reatores Biológicos , Água , Humanos , Animais , Suínos , Anaerobiose , Água/análise , Fezes , Digestão , Metano/análise
14.
J Environ Manage ; 357: 120824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583379

RESUMO

Extending the solids retention time (SRT) has been demonstrated to mitigate membrane biofouling. Nevertheless, it remains an intriguing question whether the compact and water flushing resistant mesh biofilms developed at short SRT can undergo biodegradation and be removed with extended SRT. In present study, the bio-fouled mesh filter in the 10d-SRT dynamic membrane bioreactor (DMBR), with mesh surfaces and pores covered by compact and water flushing resistant biofilms exhibiting low water permeability, was reused in the 40d-SRT DMBR without any cleanings. After being reused at 40d-SRT, its flux driven by gravity occurred from the 10th day and recovered to a regular level of 36.7 L m-2·h-1 on the 27th day. Both scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM) analyses indicated that the compact mesh biofilms formed at10d-SRT biodegraded and were removed at 40d-SRT, with the residual biofilms becoming removable by water flushing. As a result, the hydraulic resistance of the bio-fouled mesh filter decreased from 4.36 × 108 to 6.97 × 107 m-1, and its flux fully recovered. The protein and polysaccharides densities in mesh-biofilms decreased from 24.4 to 9.7 mg/cm2 and from 10.7 to 0.10 mg/cm2, respectively, which probably have contributed to the disappearance of compact biofilms and the decrease in adhesion. Furthermore, the sludge and mesh-biofilms in the 40d-SRT reactor contained a higher relative abundance of dominant quorum quenching bacteria, such as Rhizobium (3.52% and 1.35%), compared to those in the 10d-SRT sludge (0.096%) and mesh biofilms (0.79%), which might have been linked to a decline in extracellular polymeric substances and, consequently, the biodegradation and disappearance of compact biofilms.


Assuntos
Incrustação Biológica , Esgotos , Biofilmes , Incrustação Biológica/prevenção & controle , Filtração , Reatores Biológicos/microbiologia , Membranas Artificiais
15.
J Environ Manage ; 357: 120843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588621

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Assuntos
Óxido Ferroso-Férrico , Nitritos , Nitritos/metabolismo , Transporte de Elétrons , Anaerobiose , Metano , Elétrons , Desnitrificação , Oxirredução , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia
16.
Environ Sci Technol ; 58(15): 6637-6646, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38580315

RESUMO

Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.


Assuntos
Euryarchaeota , Selênio , Metano , Proteômica , Selenocisteína/metabolismo , Euryarchaeota/metabolismo , Estresse Oxidativo , Oxigênio , Anaerobiose , Reatores Biológicos
17.
Nat Commun ; 15(1): 3308, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632275

RESUMO

Continuous-flow biocatalysis utilizing immobilized enzymes emerged as a sustainable route for chemical synthesis. However, inadequate biocatalytic efficiency from current flow reactors, caused by non-productive enzyme immobilization or enzyme-carrier mismatches in size, hampers its widespread application. Here, we demonstrate a general-applicable and robust approach for the fabrication of a high-performance enzymatic continuous-flow reactor via integrating well-designed scalable isoporous block copolymer (BCP) membranes as carriers with an oriented and productive immobilization employing material binding peptides (MBP). Densely packed uniform enzyme-matched nanochannels of well-designed BCP membranes endow the desired nanoconfined environments towards a productive immobilized phytase. Tuning nanochannel properties can further regulate the complex reaction process and fortify the catalytic performance. The synergistic design of enzyme-matched carriers and efficient enzyme immobilization empowers an excellent catalytic performance with >1 month operational stability, superior productivity, and a high space-time yield (1.05 × 105 g L-1 d-1) via a single-pass continuous-flow process. The obtained performance makes the designed nano- and isoporous block copolymer membrane reactor highly attractive for industrial applications.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Biocatálise , Catálise , Polímeros/química
18.
Water Environ Res ; 96(4): e11026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641883

RESUMO

Biological approaches and coagulation are frequently used to reduce the chemical oxygen demand (COD) for treatment of ceramic effluent water. The technology known as the moving bed biofilm reactor (MBBR) can accomplish this goal. Further, the process of emulsification-aided innovative MBBR using biosurfactants can be proposed for ceramic effluent treatment. In a step-by-step upgrading scheme, biosurfactants and a consortia of halophilic and halotolerant microbial culture was utilized for the treatment of the effluent water. Over the course of 21 days, a progressive decrease in COD of up to 95.79% was achieved. Over the next 48 h period, the biochemical oxygen demand (BOD) was reduced by 98.3%, while total suspended solids (TSS) decreased by 79.41%. With the use of this innovative MBBR technology, biofilm formation accelerated, lowering the COD, BOD, and TSS levels. This allows treated water to be used for further research on recycling it back into the ceramics sector and repurposing it for agricultural purposes. PRACTITIONER POINTS: Implementation of modified MBBR technology for the treatment of effluent water. Biosurfactants could reduce in the organic and inorganic loads. Increase in MLSS values with COD removal observed. The plant operations without the use of chemical coagulants was effective with biosurfactants. Biofilm formation on carriers was scraped and the presence of surfactin and rhamnolipid was confirmed.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Biofilmes , Reatores Biológicos , Água
19.
Sci Rep ; 14(1): 8656, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622318

RESUMO

The adaptation of biochar in anaerobic digestion (AD) positively influences the conversion of substrate to biomethane and promotes system stability. This study investigated the influence of biochar (BC) doses (0 to 8 g/L) on the Biochemical Methane Potential (BMP) of glucose during a 60-day AD in a mesophilic batch-type reactor. The first 6.5 weeks of the experimentation were dedicated to the microorganism's adaptation to the biochar and degradation of organics from the used inoculum (3 phases of the glucose feeding). The last 2 weeks (4th phase of glucose feeding) represented the assumption, that glucose is the sole carbon source in the system. A machine learning model based on the autoregressive integrated moving average (ARIMA) method was used to model the cumulative BMP. The results showed that the BMP increased with the amount of BC added. The highest BMP was obtained at a dose of 8 g/L, with a maximum cumulative BMP of 390.33 mL CH4/g-VS added. Likewise, the system showed stability in the pH (7.17 to 8.17). In contrast, non-amended reactors produced only 135.06 mL CH4/g-VS and became acidic at the end of the operation. Reducing the influence of carbon from inoculum, sharpened the positive effect of BC on the kinetics of biomethane production from glucose.


Assuntos
Reatores Biológicos , Carbono , Anaerobiose , Carvão Vegetal , Metano
20.
Water Environ Res ; 96(4): e11014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38636991

RESUMO

In this study, the characteristics, anaerobic treatability, and energy potential of wastewater samples taken from a dairy products industry were investigated. It was determined that the wastewater has a high organic load (COD = 2800 mg O2/L) and a large proportion of this load is biodegradable. The biochemical methane potential (BMP) value of wastewater was measured as 1118.71 ± 122 ml CH4/L. Volatile solids (VS) removal of 67.25 ± 4.98% was achieved during batch tests and the obtained methane yield was calculated as 411.59 ± 22.8 ml CH4/g VS. Peak methane formation rate and lag time of microorganisms were determined as 163.42 ± 3.83 ml CH4/g VS d and 0.584 ± 0.023 d, respectively. Rate constant for the first-order kinetic model was 0.384 ± 0.072 d-1. The volatile fatty acid (VFA) yield was measured as 155.19 mg COD/g VSS. It was concluded that the wastewater can be treated anaerobically without any inhibition and it has great energy potential. PRACTITIONER POINTS: Dairy wastewater has a large organic load and that most of the organics can be easily biodegradable. Although there are many components considered to be toxic for anaerobic treatment in wastewater, they were found to be very under the inhibition thresholds and did not pose any risk of toxicity. At a satisfactory level, organic matter removal and methane formation were observed in batch anaerobic tests. A rapid microbial adaptation was achieved and the system reached equilibrium in a short time without any acid accumulation. The electrical and caloric energy potentials of the obtained methane gas were calculated as 2.12 and 4.25 kWh/m3, respectively.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Ácidos Graxos Voláteis , Metano , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...